Regional Anaesthesia for Breast Surgery

Vol 2 | Issue 1 | January-June 2021 | Page 40-46 | Anjolie Chhabra, Divya Sethi, Abhijit Nair

Authors: Anjolie Chhabra [1], Divya Sethi [2], Abhijit Nair [3]

[1] Department of Anaesthesia, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India.
[2] Department of Anaesthesia, Employees’ State Insurance Cooperation Postgraduate Institute of Medical Sciences and Research, New Delhi, India.
[3] Department of Anaesthesia, Ibra Hospital, North Sharqiya Governorate, Ibra-414, Sultanate of Oman.

Address of Correspondence
Dr. Anjolie Chhabra,
Professor, Department of Anaesthesiology, AIIMS, New Delhi, India.


Innervation of the breast:
The breast receives innervation mainly from the 2 to 6 thoracic (T2-6) spinal nerves. The thoracic spinal nerves after emerging from the intervertebral foramina divide into dorsal and ventral ramii [1]. The dorsal ramii provide innervation to the skin and the muscles of the medial back. Each ventral ramus continues anteriorly as an intercostal nerve, accompanied by an intercostal artery and vein lying between the innermost and the internal intercostal muscle along the inferior borders of the respective ribs. Near the midpoint of the hemithorax corresponding to the midaxillary line, each intercostal nerve gives a lateral cutaneous branch that further divides into an anterior and posterior branch. Sensory supply of lateral aspect of breast is provided by the anterior divisions of the lateral cutaneous branches of T2–T6 intercostal nerves with contributions from T1 and T7 nerves. The intercostal nerves interconnect providing overlapping nerve supply to the breast. The main intercostalnerve continues anteriorly and terminates as an anterior cutaneous branch that further divides into a medial and lateral divisions which provide cutaneous innervation over the sternum and medial part of the breast respectively [2-4] (Figure 1) [5].
The intercostobrachial nerve (T2) mainly provides cutaneous innervation to the axillary tail of the breast, the axilla, and the medial upper arm. The medial cutaneous nerve of the arm (branch of the brachial plexus) may also supply the roof of the axilla and may receive contributions from T1 and T3 nerves. The supraclavicular nerves of the cervical plexus provide sensory supply to the infraclavicular or supramammary area [6, 7], (Figure 1).
The muscles of chest wall underlying the breast, the pectoralis major (PMM) and pectoralis minor (PmM) are innervated by mixed motor and sensory nerves, the lateral pectoral nerves (LPN) (C5-7, lateral cord) and the medial pectoral nerves (MPN) (C7-T1, medial cord), branches of the brachial plexus. These nerves also possess proprioceptive and nociceptive fibres and thus traction, stretching or muscle spasm of these muscles can lead to dull, aching perioperative pain. In addition, the long thoracic nerve (LTN) (C5-7) and the thoracodorsal nerve (TDN) (C6-8, posterior cord) branches of the brachial plexus innervate the serratus anterior (SAM) and the latissimus dorsi (LD) muscles, that form part of the axilla [8].
Therefore, the breast, axilla and the surrounding tissues are supplied by interconnected network of T2-T6 intercostal nerves, branches of the brachial plexus and the lower branches of the cervical plexus (Figure 1) [5].


1. Wijayasinghe N, Andersen KG, Kehlet H. Neural blockade for persistent pain after breast cancer surgery. Reg Anesth Pain Med. 2014;39:272-8.
2. Woodworth GE, Ivie RMJ, Nelson SM, Walker CM, Maniker RB. Perioperative Breast Analgesia: A Qualitative Review of Anatomy and Regional Techniques. Reg Anesth Pain Med. 2017; 42:609-31.
3. Cheng GS, Ilfeld BM. An Evidence-Based Review of the Efficacy of Perioperative Analgesic Techniques for Breast Cancer-Related Surgery. Pain Med. 2017 Jul 1; 18:1344-65.
4. Cheng GS, Ilfeld BM. A review of postoperative analgesia for breast cancer surgery. Pain Manag. 2016; 6:603-18.
5. Kim DH, Kim S, Kim CS, Lee S, Lee IG, Kim HJ, Lee JH, Jeong SM, Choi KT. Efficacy of Pectoral Nerve Block Type II for Breast-Conserving Surgery and Sentinel Lymph Node Biopsy: A Prospective Randomized Controlled Study. Pain Res Manag. 2018 May 15;2018:4315931.
6. Wisotzky EM, Saini V, Kao C. Ultrasound-Guided Intercostobrachial Nerve Block for Intercostobrachial Neuralgia in Breast Cancer Patients: A Case Series. PM R. 2016; 8:273-7.
7. Sarhadi NS, Shaw-Dunn J, Soutar DS. Nerve supply of the breast with special reference to the nipple and areola: Sir Astley Cooper revisited. Clin Anat. 1997; 10:283-7. Nair AS. Cutaneous innervations encountered during mastectomy: A perplexing circuitry. Indian J Anaesth. 2017; 61:1026-27.
8. Nair AS. Cutaneous innervations encountered during mastectomy: A perplexing circuitry. Indian J Anaesth. 2017; 61:1026-27.
9. Ravi PR, Jaiswal P. Thoracic epidural analgesia for breast oncological procedures: A better alternative to general anesthesia. J Mar Med Soc 2017;19: 91-5.
10. Chan KK, Welch KJ. Cardiac arrest during segmental thoracic epidural anesthesia. Anesthesiology. 1997;86: 503-5.
11. Karmakar MK. Thoracic paravertebral block. Anesthesiology. 2001;95:771–780.
12. Kairaluoma PM, Bachmann MS, Rosenberg PH, Pere PJ. Single injection paravertebral block before general anaesthesia enhances analgesia after breast cancer surgery with and without associated lymph node biopsy. Anesthesia and Analgesia 2004;99(6):1837-43.
13. Pusch F, Freitag H, Weinstabl C, Obwegeser R, Huber E, Wildling E. Single-injection paravertebral block compared to general anaesthesia in breast surgery. Acta Anaesthesiologica Scandinavica 1999;43(7):770-4.
14. Terheggen MA, Wille F, Borel Rinkes IH, Ionescu TI, Knape JT. Paravertebral blockade for minor breast surgery. Anesthesia & Analgesia 2002;94(2):355-9.
15. Greengrass R, O’Brien F, Lyerly K, Hardman D, Gleason D, D’Ercole F, et al. Paravertebral block for breast cancer surgery. Canadian Journal of Anaesthesia 1996;43(8):858-61.
16. Abdallah FW, Morgan PJ, Cil T, McNaught A, Escallon JM, Semple JL, et al. Ultrasound-guided multilevel paravertebral blocks and total intravenous anesthesia improve the quality of recovery after ambulatory breast tumor resection. Anesthesiology 2014;120(3):703-13.
17. Eason MJ, Wyatt R. Paravertebral thoracic block-a reappraisal. Anaesthesia 1979;34: 638-42.
18. Naja MZ, Ziade MF, Lonnqvist PA. Nerve stimulator guided paravertebral blockade versus general anaesthesia for breast surgery: a prospective randomized trial. Eur J Anaesthesiology 2003;20: 897-903.
19. Krediet AC, Moayeri N, van Geffen GJ, Bruhn J, Renes S, Bigeleisen PE, et al. Different Approaches to Ultrasound-guided Thoracic Paravertebral Block: An Illustrated Review. Anesthesiology. 2015;123:459-74.
20. Chhabra A, Roy Chowdhury A, Prabhakar H, Subramaniam R, Arora M Kumar, Srivastava A, Kalaivani M. Paravertebral anaesthesia with or without sedation versus general anaesthesia for women undergoing breast cancer surgery. Cochrane Database of Systematic Reviews 2021, Issue 2. Art. No.: CD012968
21. Lönnqvist PA, MacKenzie J, Soni AK, Conacher ID. Paravertebral blockade. Failure rate and complications. Anaesthesia 1995;50: 813-5.
22. Patnaik R, Chhabra A, Subramaniam R, Arora MK, Goswami D, Srivastava A, et al. A Randomized Controlled Trial. Comparison of Paravertebral Block by Anatomic Landmark Technique to Ultrasound-Guided Paravertebral Block for Breast Surgery Anesthesia. Reg Anesth Pain Med 2018;43: 385-90.
23. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: a novel analgesic technique in thoracic neuropathic pain. Reg Anaesth Pain Med 2016;41:621-7.
24. Huang W, Wang W, Xie W, Chen Z, Liu Y. Erector spinae plane block for postoperative analgesia in breast and thoracic surgery: A systematic review and meta-analysis. J Clin Anesth. 2020;66:109900.
25. Altıparmak B, Korkmaz Toker M, Uysal Aİ, Turan M, Gümüş Demirbilek S. Comparison of the effects of modified pectoral nerve block and erector spinae plane block on postoperative opioid consumption and pain scores of patients after radical mastectomy surgery: A prospective, randomized, controlled trial. J Clin Anesth. 2019;54: 61-5.
26. Gürkan Y, Aksu C, Kuş A, Yörükoğlu UH. Erector spinae plane block and thoracic paravertebral block for breast surgery compared to IV-morphine: a randomized controlled trial. J Clin Anesth. 2020; 59: 84-8.
27. Zhang J, He Y, Wang S, Chen Z, Zhang Y, Gao Y, Wang Q, Xia Y, Papadimos TJ, Zhou R. The erector spinae plane block causes only cutaneous sensory loss on ipsilateral posterior thorax: a prospective observational volunteer study. BMC anesthesiology. 2020 Dec;20:1-8.
28. Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery. Anaesthesia. 2011;66:847-8.
29. Blanco R, Fajardo M, Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery. Rev Esp Anestesiol Reanim. 2012;59:470-5.
30. Blanco R, Parras T, McDonnell JG, Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block. Anaesthesia. 2013;68:1107-13.
31. Kulhari S, Bharti N, Bala I, Arora S, Singh G. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: a randomized controlled trial. Br J Anaesth. 2016;117:382-86.
32. Franco CD, Inozemtsev K. Reg Anesth Pain Med. 2020;45:151–154.

33. George R, Dahl K, Blair DHJ. How I Do It: Transversus Thoracic Plane and Pecto-Intercostal Fascial Block. ASRA NEWS. Available at and Pecto-Intercostal Fascial Block. Last accessed on December 15, 2020.
34. Murata H, Hida K, Hara T. Transverse thoracic muscle plane block. Reg Anesth Pain Med. 2016;41:411–12.
35. Ueshima H, Otake H. Addition of transversus thoracic muscle plane block to pectoral nerves block provides more effective perioperative pain relief than pectoral nerves block alone for breast cancer surgery. Br J Anaesth. 2017;118:439–43

How to Cite this Article: Chhabra A, Sethi D, Nair A | Regional Anaesthesia for Breast surgery | International Journal of Regional Anaesthesia | January-June 2021; 2(1): 40-46.

(Abstract) (Text HTML) (Download PDF)