Posts

Current Concepts in Pain Management of Total Knee Replacement Surgeries: A Narrative Review

Vol 3 | Issue 2 | July-December 2022 | Page 56-75 | Kartik Sonawane, Jagannathan Balavenkatasubramanian

DOI: 10.13107/ijra.2022.v03i02.057


Authors: Kartik Sonawane [1], Jagannathan Balavenkatasubramanian [2]

[1] Department of Anaesthesia, Ganga Medical Centre & Hospitals Pvt. Ltd. , Coimbatore, Tamil Nadu, India.

Address of Correspondence
Dr. Jagannathan Balavenkatasubramanian,
Department of Anaesthesia, Ganga Medical Centre & Hospital, Coimbatore, Tamil Nadu, India.
E-mail: drbalavenkat@gmail.com


Abstract

Total knee replacement/arthroplasty (TKR/TKA) is considered a life-changing surgery as it not only corrects the pathology and associated joint deformity but also renders the patient pain-free allowing them to perform activities of daily living as before. Such favorable outcomes depend entirely on the perioperative pain management strategies. Structuring such strategies requires background knowledge of the goals set, the process of pain generation before and after the surgery, and innervations of the pain-generating components involved in each surgical step.
The multifactorial origin of TKR pain requires a multidimensional pain management strategy such as multimodal analgesia (MMA). It should incorporate all the essential ingredients that target each step of the pain generation process. Apart from pharmacological agents and nonpharmacological techniques, regional analgesia (RA) plays a very important role as an adjunct to MMA to provide quality analgesia that promotes enhanced recovery and mobility. However, the choice of RA technique remains dependent on its motor-sparing effect, procedure-specific analgesic coverage, opioid-sparing effect, and suitability for enhanced recovery after surgery (ERAS). Psychological analgesia is also an important aspect of MMA, aiding in resolving psychological concerns and postoperative pain management and empowering patients in their own pain management process by encouraging active participation. In addition to providing appropriate pain management services, assessing expected outcomes in the postoperative period is also important to close loopholes and provide rescue analgesics when needed.
This narrative review article highlights important aspects of pain management strategies and the essential requirements for implementing them to achieve desired outcomes. We believe this article will help readers design or modify their pain management strategy to meet all of their goals.
Keywords: Total knee replacement, Total knee arthroplasty, Pain management, Motor-sparing regional anesthetic technique, Multimodal analgesia, Procedure-specific analgesia.


References


[1] Filos KS, Lehmann KA. Current concepts and practice in postoperative pain management: need for a change? Eur Surg Res. 1999;31:97-107.
[2] Maheshwari AV, Blum YC, Shekhar L, Ranawat AS, Ranawat CS. Multimodal pain management after total hip and knee arthroplasty at the Ranawat Orthopaedic Center. Clin Orthop Relat Res. 2009;467:1418-23.
[3] Parvataneni HK, Ranawat AS, Ranawat CS. The use of local periarticular injections in the management of postoperative pain after total hip and knee replacement: a multimodal approach. Instr Course Lect. 2007;56:125-31.
[4] Sinatra RS, Torres J, Bustos AM. Pain management after major orthopaedic surgery: current strategies and new concepts. J Am Acad Orthop Surg. 2002;10:117-29.
[5] Sonawane, K. , Dixit, H. . Regional Analgesia for Knee Surgeries: Thinking beyond Borders. In: Whizar-Lugo, V. M. , Saucillo-Osuna, J. R. , Castorena-Arellano, G. , editors. Topics in Regional Anesthesia [Internet]. London: IntechOpen; 2021 [cited 2022 Jul 12]. Available from: https://www.intechopen.com/chapters/77934.
[6] Campbell JN. APS 1995 Presidential address. Pain Forum.1996;5:85–8.
[7] Morone NE, Weiner DK. Pain as the fifth vital sign: exposing the vital need for pain education. Clin Ther. 1016; 2013;35(11):1728-1732:001.
[8] Lippe PM. The decade of pain control and research. Pain Med. 2000;1 (4):286.
[9] Melnyk M, Casey RG, Black P, Koupparis AJ. Enhanced recovery after surgery (ERAS) protocols: Time to change practice? Can Urol Assoc J. 2011; 5(5):342–8.
[10] Moningi S, Patki A, Padhy N, Ramachandran G. Enhanced recovery after surgery: An anesthesiologist’s perspective. J Anaesthesiol Clin Pharmacol. 2019;35(Suppl 1):S5–13.
[11] Pędziwiatr M, Mavrikis J, Witowski J, Adamos A, Major P, Nowakowski M, et al. Current status of enhanced recovery after surgery (ERAS) protocol in gastrointestinal surgery. Med Oncol. 2018;35(6):95.
[12] Johnson RL, Kopp SL. Optimizing perioperative management of total joint arthroplasty. Anesthesiol Clin. 2014;32 (4):865–80.
[13] Chan E-Y, Fransen M, Parker DA, Assam PN, Chua N. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev. 2014;(5):CD009941.
[14] Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.
[15] Hirasawa Y, Okajima S, Ohta M, Tokioka T. Nerve distribution to the human knee joint: anatomical and immunohistochemical study. Int Orthop. 2000;24(1):1–4.
[16] Haus J, Halata Z. Innervation of the anterior cruciate ligament. Int Orthop. 1990;14(3):293–6.
[17] Krauspe R, Schmitz F, Zöller G, Drenckhahn D. Distribution of neurofilament-positive nerve fibres and sensory endings in the human anterior cruciate ligament. Arch Orthop Trauma Surg. 1995;114(4):194–8.
[18] Ikeuchi M, Wang Q, Izumi M, Tani T. Nociceptive sensory innervation of the posterior cruciate ligament in osteoarthritic knees. Arch Orthop Trauma Surg. 2012;132(6):891–5.
[19] Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985;1(1):58–62.
[20] Mine T, Kimura M, Sakka A, Kawai S. Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study. Arch Orthop Trauma Surg. 2000;120(3–4): 201–4.
[21] Institute of Medicine (US) Committee on Pain, Disability, and Chronic Illness Behavior. Pain and Disability: Clinical, Behavioral, and Public Policy Perspectives. Osterweis M, Kleinman A, Mechanic D, editors. Washington (DC): National Academies Press (US); 1987. PMID: 25032476.
[22] Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am. 2014; 25(4):629–38.
[23] Felson DT. The sources of pain in knee osteoarthritis. Curr Opin Rheumatol. 2005 Sep;17(5):624-8.
[24] Eitner A, Hofmann GO and Schaible H-G (2017) Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Front. Mol. Neurosci. 10:349. doi: 10.3389/fnmol.2017.00349
[25] Schaible HG. (2013) Articular Nociceptors. In: Gebhart G.F., Schmidt R.F. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg.
[26] Cummins TR, Sheets PL, Waxman SG. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain. 2007 Oct;131(3):243-257.
[27] McEntire DM, Kirkpatrick DR, Dueck NP, Kerfeld MJ, Smith TA, Nelson TJ, Reisbig MD, Agrawal DK. Pain transduction: a pharmacologic perspective. Expert Rev Clin Pharmacol. 2016 Aug;9(8):1069-80.
[28] Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci. 2018 Jul 24;19(8):2164.
[29] Kirkpatrick DR, McEntire DM, Hambsch ZJ, Kerfeld MJ, Smith TA, Reisbig MD, Youngblood CF, Agrawal DK. Therapeutic Basis of Clinical Pain Modulation. Clin Transl Sci. 2015 Dec;8(6):848-56.
[30] Kehlet H, Dahl JB. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg 1993;77:1048-56.
[31] Buvanendran A., Kroin J. S. Multimodal analgesia for controlling acute postoperative pain. Current Opinions in Anaesthesiology. 2009;22(5):588–593.
[32] Young A., Buvanendran A. Recent advances in multimodal analgesia. Anesthesiology Clinics. 2012;30(1):91–100.
[33] Novello-Siegenthaler A, Hamdani M, Iselin-Chaves I, Fournier R. Ultrasoundguided continuous femoral nerve block: a randomized trial on the influence of femoral nerve catheter orifice configuration (six-hole versus end-hole) on postoperative analgesia after total knee arthroplasty. BMC Anesthesiol, 2018, 18: 191.
[34] Kim DH, Beathe JC, Lin Y, et al. Addition of infiltration between the popliteal artery and the capsule of the posterior knee and adductor canal block to periarticular injection
enhances postoperative pain control in total knee arthroplasty: a randomized controlled trial. Anesth Analg, 2019, 129: 526–535.
[35] Walder B, Schafer M, Henzi I, Tramèr MR. Efficacy and safety of patientcontrolled opioid analgesia for acute postoperative pain. A quantitative systematic review. Acta Anaesthesiol Scand, 2001, 45: 795–804.
[36] Dias AS, Rinaldi T, Barbosa LG. The impact of patients controlled analgesia undergoing orthopedic surgery. Braz J Anesthesiol, 2016, 66: 265–271.
[37] Song MH, Kim BH, Ahn SJ, et al. Peri-articular injections of local anaesthesia can replace patient-controlled analgesia after total knee arthroplasty: a randomised controlled study. Int Orthop, 2016, 40: 295–299.
[38] Rantasalo MT, Palanne R, Juutilainen K, et al. Randomised controlled study comparing general and spinal anaesthesia with and without a tourniquet on the outcomes of total knee arthroplasty: study protocol. BMJ Open, 2018, 8: e025546.
[39] Yik JH, Tham WYW, Tay KH, Shen L, Krishna L. Perioperative pregabalin does not reduce opioid requirements in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27: 2104–2110.
[40] Ryu JH, Jeon YT, Min B, Hwang JY, Sohn HM. Effects of palonosetron for prophylaxis of postoperative nausea and vomiting in high-risk patients undergoing total knee arthroplasty: a prospective, randomized, double-blind, placebocontrolled study. PLoS One, 2018, 13: e0196388.
[41] Borckardt JJ, Reeves ST, Milliken C, et al. Prefrontal versus motor cortex transcranial direct current stimulation (tDCS) effects on post-surgical opioid use. Brain Stimul, 2017, 10: 1096–1101.
[42] Pogatzki-Zahn EM, Zahn PK. From preemptive to preventive analgesia. Curr Opin Anaesthesiol, 2006, 19: 551–555.
[43] Grape S, Tramèr MR. Do we need preemptive analgesia for the treatment of postoperative pain? Best Pract Res Clin Anaesthesiol, 2007, 21: 51–63.
[44] Korean Knee Society. Guidelines for the management of postoperative pain after total knee arthroplasty. Knee Surg Relat Res. 2012;24(4):201-207.
[45] Sonawane K, Dixit H, Balavenkatasubramanian J. Regional analgesia technique for postoperative analgesia in total knee arthroplasty: have we hit the bull’s eye yet? Braz J
Anesthesiol. 2021 May-Jun;71(3):307-309.
[46] Momoli A, Giarretta S, Modena M, Micheloni GM. The painful knee after total knee arthroplasty: evaluation and management. Acta Biomed. 2017;88 (2S):60–7.
[47] Bannister K, Sachau J, Baron R, Dickenson AH. Neuropathic Pain: Mechanism-Based Therapeutics. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:257-274.
[48] Finnerup NB, Kuner R, Jensen TS. Neuropathic Pain: From Mechanisms to Treatment. Physiol Rev. 2021 Jan 1;101(1):259-301.
[49] St John Smith E. Advances in understanding nociception and neuropathic pain. J Neurol. 2018 Feb;265(2):231-238.
[50] Macario A, Weinger M, Carney S, Kim A Anesth Analg. 1999 Sep; 89(3): 652-8.
[51] Hadzic A, Williams BA, Karaca PE, Hobeika P, Unis G, Dermksian J, Yufa M, Thys DM, Santos AC Anesthesiology. 2005 May; 102(5): 1001-7.
[52] lfeld BM, Vandenborne K, Duncan PW, Sessler DI, Enneking FK, Shuster JJ, Theriaque DW, Chmielewski TL, Spadoni EH, Wright TW Anesthesiology. 2006 Nov; 105(5): 999- 1007.
[53] Smith LM, Cozowicz C, Uda Y, Memtsoudis SG, Barrington MJ. Neuraxial and combined neuraxial/ general anesthesia compared to general anesthesia for major truncal and lower limb surgery: A systematic review and meta-analysis. Anesth Analg. 2017;125 (6):1931– 45.
[54] Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK. Executive summary: regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35(1):102–5.
[55] Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK. Executive summary: regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med. 2010;35(1):64–101.
[56] Sonawane K, Balavenkatasubramanian J, Dixit H, Tayi H, Goel VK. Regional anesthesia for scapular fracture surgery: an educational review of anatomy and techniques. Reg Anesth Pain Med. 2021; 46(4):344–9.
[57] Sonawane K, Dixit H, Balavenkatasubramanian J, Gurumoorthi P (2021) Uncovering secrets of the beauty bone: A comprehensive review of anatomy and regional anesthesia techniques of clavicle surgeries. Open J Orthop Rheumatol 6(1): 019-029.
[58] Vas L, Pai R, Khandagale N, Pattnaik M. Pulsed radiofrequency of the composite nerve supply to the knee joint as a new technique for relieving osteoarthritic pain: a preliminary report. Pain Physician. 2014;17(6): 493–506.
[59] Priest , B.T. , B.A. Murphy , J.A. Lindia , C. Diaz , C. Abbadie , A.M. Ritter , P. Liberator
, L.M. Iyer , S.F. Kash , M.G. Kohler , et al . 2005 . Contribution of the tetrodotoxin- resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc. Natl. Acad. Sci. USA. 102 : 9382 – 9387 .
[60] Amaya , F. , H. Wang , M. Costigan , A.J. Allchorne , J.P. Hatcher , J. Egerton , T. Stean ,
V. Morisset , D. Grose , M.J. Gunthorpe , et al . 2006 . The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral infl ammatory pain hypersensitivity. J. Neurosci. 26 : 12852 – 12860 .
[61] Gorczyca R, Filip R, Walczak E. Psychological aspects of pain. Ann Agric Environ Med. 2013;Spec no. 1:23-7. PMID: 25000837.
[62] McGrath PA. Psychological aspects of pain perception. Arch Oral Biol. 1994;39 Suppl:55S-62S.
[63] Weissman DE, Dahl JL, Beasley JW. The cancer pain role model program of the Wisconsin cancer pain initiative. J Pain Symptom Manage. 1993;8(1):29–35.
[64] Brown JK, Singh K, Dumitru R, Chan E, Kim MP. The benefits of enhanced Recovery After Surgery programs and their application in cardiothoracic surgery. Methodist Debakey Cardiovasc J. 2018;14(2):77–88.
[65] Tennant F. The physiologic effects of pain on the endocrine system. pain Ther. 2013;2(2):75-86.
[66] Sonawane K, Dixit H, Mistry T, Balavenkatasubramanian J. Comparing Analgesic Efficacy of a Novel Dual Subsartorial Block Using Two Different Volumes in Patients Undergoing Total Knee Arthroplasty: A Prospective, Double-Blind, Monocentric, Randomised Trial. Cureus. 2021 Dec 17;13(12):e20488.


How to Cite this Article: Sonawane K, Balavenkatasubramanian J | Current Concepts in Pain Management of Total Knee Replacement Surgeries: A Narrative Review | International Journal of Regional Anaesthesia | July-December 2022; 3(2): 56-75.


(Abstract Text HTML)    (Download PDF)


Current Concepts in Postoperative Pain Management Surgeries of Hip Joint: A Narrative Review

Vol 3 | Issue 2 | July-December 2022 | Page 49-55 | Anju Gupta, Mallika Kaushal, Amit Malviya, Shalender Kumar, Sandeep Diwan

DOI: 10.13107/ijra.2022.v03i02.056


Authors: Anju Gupta [1], Mallika Kaushal [1], Amit Malviya [1], Shalender Kumar [1], Sandeep Diwan [2]

[1] Department of Anaesthesia, All India Institute of Medical Sciences, New Delhi, India.
[2] Department of Anaesthesia, Sancheti Hospital, Pune, Maharashtra, India.

Address of Correspondence
Dr. Anju Gupta,
Assistant Professor, Department of Anaesthesia, All India Institute of Medical Sciences, New Delhi, India.
E-mail: drajugupta09@gmail.com


Abstract

Hip surgery is a common surgical procedure in the elderly and leads to significant pain postoperatively. The hip joint has a complex innervation which is unlikely to be covered with any single modality of pain relief. Multimodal analgesia has been critical in facilitating early recovery and rehabilitation in these patients. Regional analgesia is an important component of multimodal analgesia regimens and is instrumental in achieving optimal patient outcomes. Single shot or continuous central or peripheral nerve blocks provide effective and safe postoperative analgesia, lower opioid consumption, faster rehabilitation, and a high level of patient satisfaction. An ideal regional anaesthesia technique for hip surgery should be motor sparing while providing effective perioperative pain relief. Regional anaesthesia has seen enormous growth in the recent past due to advances in technology and research. These blocks have shown analgesic efficacy, have an opioid-sparing effect, and enable better patient positioning for central neuraxial blocks. Some of the novel interfascial plane blocks like Pericapsular Nerve Group (PENG) block are now being explored for hip analgesia. Within a few years of being described, these novel nerve blocks have seen tremendous favour in the literature and are being extensively used in the current practice of analgesia for hip surgery. In the present review, we aim to discuss the various modalities of analgesia which have been utilised in the past and would discuss few of the newer blocks for hip surgery.
Keywords: Nerve blocks, Ultrasonography, Analgesics, Total hip arthroplasty, Fascia illiaca block,
Multimodal analgesia, Transmuscular, Quadratus lumborum block


References


1. Diwan S, NairA, Dadke M, Sancheti P. Intricacies of ultrasound guided lumbar plexus block in octogenarians:A retrospective case series. J Med Ultrasound 0;0:0
2. Laumonerie P, Dalmas Y, Tibbo ME, Robert S, Durant T, Caste T et al. Sensory innervation of the hip joint and referred pain: A systematic review of the literature. Pain medicine. 2021;22(5):1149-57
3. Anger M, Valovska T, Beloeil H, Lirk P, Joshi GP, Van de Velde M et al. PROSPECT guideline for total hip arthroplasty: a systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia. 2021;76:1082-97
4. Wainwright TW, Gill M, McDonald DA, Middleton RG, Reed M, Sahota O et al. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta orthopaedica. 2020;91(1):3-19
5. Rothwell MP, Pearson D, Hunter JD, Mitchell PA, Graham-Woollard T, Goodwin L et al. Oral oxycodone offers equivalent analgesia to intravenous patient-controlled analgesia after total hip replacement: a randomized, single-centre, non-blinded, non-inferiority study. Br J Anaesth. 2011;106(6):865-72
6. de Beer J de V, Winemaker MJ, Donnelly GA, Miceli PC, Reiz JL, Harsanyi Z et al. Efficacy and safety of controlled-release oxycodone and standard therapies for postoperative pain after knee or hip replacement. Can J Surg. 2005;48(4):277-83
7. Min BW, Kim Y, Cho HM, Park KS, Yoon PW, Nho JH et al. Perioperative pain management in total hip arthroplasty: Korean Hip Society guidelines. Hip Pelvis. 2016; 28(1):15-23.
8. Bujedo BM. A clinical approach to neuraxial morphine for the treatment of postoperative pain. Pain Res Treat. 2012;2012:612145
9. Gandhi K, Viscusi E. Multimodal pain management techniques in hip and knee arthroplasty. The Journal of New York School of Regional Anaesthesia. 2009;13:1-10
10. Brull R, Macfarlane AJR, Chan VWS. Spinal, epidural and caudal anesthesia. In: Gropper M, Erikson L, Fleisher L, Wiener-Kronish J, Cohen N, Leslie K, eds. Miller’s Anesthesia. 9th ed. Elsevier 2019;1:1413-4
11. Choi P, Bhandari M, Scott J, Douketis JD. Epidural analgesia for pain relief following hip or knee replacement. Cochrane database of systematic reviews. 2003;3:CD003071
12. Mannion S. Psoas compartment block. Continuing education in Anaesthesia, Critical Care & Pain. 2007;7(5):162-6
13. Winnie AP, Ramamurthy S, Durrani Z. The inguinal paravascular technic of lumbar plexus anesthesia: the “3-in-1 block”. Anesth Analg. 1973;52(6):989-96
14. Moore CL. Time to abandon the term “3 in 1 block”. Ann Emerg Med. 2015:66(2):215
15. Grant CRK, Checketts MR. Analgesia for primary hip and knee arthroplasty: the role of regional anaesthesia. Continuing education in Anaesthesia, Critical Care & Pain. 2008;8(2):56-61
16. Singelyn FJ, Ferrant T, Malisse MF, Joris D. Effects of patient controlled analgesia with morphine, continuous epidural analgesia, and continuous femoral nerve sheath block on rehabilitation after unilateral total hip arthroplasty. Reg Anesth Pain Med. 2005;30:452-7
17. Nishio S, Fukunishi S, Fukui T, Fujihara Y, Okahisa S, Takeda Y et al. Comparison of continuous femoral nerve block with and without combined sciatic nerve block after total hip arthroplasty: a prospective randomized study. Orthop Rev (Pavia). 2017;9(2):7063
18. Kuchálik J, Granath B, Ljunggren A, Magnuson A, Lundin A, Gupta A. Postoperative pain relief after total hip arthroplasty: a randomized, double-blind comparison between intrathecal morphine and local infiltration analgesia. Br J Anaesth. 2013;111(5):793-9
19. Ma HH, Chou TFA, Tsai SW, Chen CF, Wu PK, Chen WM. The efficacy of intraoperative periarticular injection in total hip arthroplasty: a systematic review and meta-analysis. BioMed Central Musculoskeletal Disorders. 2019;20:269
20. Dalens B, Vanneuville G, Tanguy A. Comparison of the fascia iliaca compartment block with the 3-in-1 block in children. Anesth Analg. 1989;69:705-13
21. O’Reilly N, Desmet M, Kearns R. Fascia iliaca compartment block. BJA education. 2019;19(6):191-7
22. Zhang X, Ma J. The efficacy of fascia iliaca compartment block for pain control after total hip arthroplasty: a meta-analysis. Journal of orthopaedic surgery and research. 2019;14:33
23. Hong H, Ma Y. The efficacy of fascia iliaca compartment block for pain control after hip fracture: a meta-analysis. Medicine. 2019;98:28(e16157)
24. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41(5):621-7
25. Tulgar S, Senturk O. Ultrasound guided erector spinae plane block at L-4 transverse process level provides effective postoperative analgesia for total hip arthroplasty. Journal of clinical anaesthesia. 2018;44:68
26. Azevedo AS, Fernandes HS, Júnior WC, Hamaji A, Ashmawi A. Lumbar erector spinae plane block for total hip arthroplasty analgesia. Case report. BrJP. São Paulo. 2021;4(1):91-3
27. Mujahid OM, Dey S, Nagalikar S, Arora P, Dey CK. Ultrasound-guided lumbar ESP block for post-operative analgesia as an alternative mode of analgesia in hip arthroplasty with multiple systemic issues: a case report. Ain-Shams Journal of Anesthesiology. 2021;13:47
28. Singh S, Ranjan R, Lalin D. A new indication of erector spinae plane block for perioperative analgesia is total replacement surgery – A case report. Indian J Anaesth. 2019;63(4):310-1
29. Kinjo S, Schultz A. Continuous lumbar erector spinae plane block for postoperative pain management in revision hip surgery: a case report. Rev Bras Anestesiol. 2019;69(4):420-2
30. Ahiskalioglu A, Tulgar S, Celik M, Ozer Z, Alici HA, Aydin ME. Lumbar erector spinae plane block as a main anesthetic method for hip surgery in high risk elderly patients: initial experience with a magnetic resonance imaging. Eurasian J Med. 2020;52(1):16-20
31. Xu L, Leng JC, Elsharkawy H, Hunter OO, Harrison TK, Vokach-Brodsky L et al. Replacement of fascia iliaca catheters with continuous erector spinae plane blocks within a clinical pathway facilitates early ambulation after total hip arthroplasty. Pain Medicine. 2020;21(10):2423-9
32. Blanco R. TAP block under ultrasound guidance: the description of a ‘non pops technique’. Reg Anesth Pain Med. 2007;32:130
33. Gupta A, Sondekoppam R, Kalagara H. Quadratus Lumborum Block: A technical review. Curr Anesthesiol Rep. 2019;9:257-62
34. Tiwari P, Bhatia R, Asthana V, Maheshwari R. Role of ultrasound-guided lumbar “Erector spinae plane block” and ultrasound-guided transmuscular “Quadratus lumborum block” for postoperative analgesia after hip surgeries: A randomized, controlled study. Indian Anaesth Forum. 2021;22:60-6
35. Li J, Wei C, Huang J, Li Y, Liu H, Liu J et al. Efficacy of quadratus lumborum block for pain control in patients undergoing hip surgeries: a systematic review and meta-analysis. Front Med. 2022;8:771859
36. Girón-Arango L, Peng PWH, Chin KJ, Brull R, Perlas A. Pericapsular Nerve Group (PENG) block for hip fracture. Regional Anesthesia and Pain Medicine. 2018;43:859-63
37. Pascarella G, Costa F, Del Buono R, Pulitano R, Strumia A, Piliego C et al. Impact of the pericapsular nerve group (PENG) block on postoperative analgesia and functional recovery following total hip arthroplasty: a randomised, observer-masked, controlled trial. Anaesthesia. 2022;76:1492-8
38. Teles AS, Altinpulluk EY, Sahoo RK, Galluccio F, Simón DG, İnce İ et al. Beyond the Pericapsular Nerve Group (PENG) block; a narrative review. Turk J Anaesthesiol Reanim. 2022;50(3):167-72.


How to Cite this Article: Gupta A, Kaushal M, Malviya A, Kumar S, Diwan S | Current Concepts in Postoperative Pain Management Surgeries of Hip Joint: A Narrative Review | International Journal of Regional Anaesthesia | July-December 2022; 3(2): 49-55.


(Abstract Text HTML)    (Download PDF)


Regional Anaesthesia in Enhanced Recovery After Surgery Pathways – A Quintessential Component

Vol 2 | Issue 2 | July-December 2021 | Page 87-91 | Abhijit S. Nair, Sandeep Diwan

DOI: 10.13107/ijra.2021.v02i02.033


Authors: Abhijit S. Nair [1], Sandeep Diwan [2]

[1] Department of Anaesthesia, Ibra Hospital, Ministry of Health-Oman, Ibra, Sultanate of Oman.
[2] Department of Anaesthesia, Sancheti Hospital, Pune, Maharashtra, India.

Address of Correspondence
Dr. Abhijit S. Nair, Department of Anaesthesia, Ibra Hospital, Ministry of Health-Oman, Ibra-414, Sultanate of Oman.
E-mail: abhijitnair95@gmail.com


Introduction


Enhanced recovery after surgery (ERAS) is a multimodal, perioperative care pathway designed to achieve early recovery for patients undergoing major surgery. [1] Initially described by Henry Kehlet in 1995 for colonic surgeries, the enhanced recovery pathways have now evolved and are now validated for more than 30 different types of surgery which include but are not limited to emergency laparotomy, neonatal surgeries, and lower segment cesarean sections. [2] Not only is the patient benefited from this by having an enhanced recovery and early discharge from the hospital, the cost of treatment is reduced and also leads to more turnover of patients thereby reducing the waiting list of patients scheduled for various surgeries. [3]


References


1. Ljungqvist O, Scott M, Fearon KC. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017; 152:292-8.
2. https://erassociety.org/guidelines/list-of-guidelines/ Last accessed on 20th July,2021.
3. Joliat GR, Ljungqvist O, Wasylak T, Peters O, Demartines N. Beyond surgery: clinical and economic impact of Enhanced Recovery After Surgery programs. BMC Health Serv Res. 2018; 18:1008.
4. Mehdiratta L, Mishra SK, Vinayagam S, Nair A. Enhanced recovery after surgery (ERAS)…. still a distant speck on the horizon! Indian J Anaesth. 2021; 65:93-6.
5. Ljungqvist O, Hubner M. Enhanced recovery after surgery-ERAS-principles, practice and feasibility in the elderly. Aging Clin Exp Res. 2018; 30:249-252.
6. Helander EM, Webb MP, Bias M, Whang EE, Kaye AD, Urman RD. Use of Regional Anesthesia Techniques: Analysis of Institutional Enhanced Recovery After Surgery Protocols for Colorectal Surgery. J Laparoendosc Adv Surg Tech A. 2017; 27:898-902.
7. Thapa P, Euasobhon P. Chronic postsurgical pain: current evidence for prevention and management. Korean J Pain. 2018; 31:155-73.
8. Correll D. Chronic postoperative pain: recent findings in understanding and management. F1000Res. 2017; 6:1054.
9. Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand. 2016; 60:289-334.
10. Kaye AD, Urman RD, Rappaport Y, Siddaiah H, Cornett EM, Belani K et al. Multimodal analgesia as an essential part of enhanced recovery protocols in the ambulatory settings. J Anaesthesiol Clin Pharmacol. 2019;35(Suppl 1):S40-S45.
11. Simpson JC, Bao X, Agarwala A. Pain Management in Enhanced Recovery after Surgery (ERAS) Protocols. Clin Colon Rectal Surg. 2019; 32:121-8.
12. Tan M, Law LS, Gan TJ. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. Can J Anaesth. 2015; 62:203-18.
13. Beverly A, Kaye AD, Ljungqvist O, Urman RD. Essential Elements of Multimodal Analgesia in Enhanced Recovery After Surgery (ERAS) Guidelines. Anesthesiol Clin. 2017;35: e115-e143.
14. Dunkman WJ, Manning MW. Enhanced Recovery After Surgery and Multimodal Strategies for Analgesia. Surg Clin North Am. 2018; 98:1171-84.
15. Al-Mazrou AM, Kiely JM, Kiran RP. Epidural analgesia in the era of enhanced recovery: time to rethink its use? Surg Endosc. 2019; 33:2197-2205.
16. Borzellino G, Francis NK, Chapuis O, Krastinova E, Dyevre V, Genna M. Role of Epidural Analgesia within an ERAS Program after Laparoscopic Colorectal Surgery: A Review and Meta-Analysis of Randomised Controlled Studies. Surg Res Pract. 2016; 2016:7543684.
17. Rosen DR, Wolfe RC, Damle A, et al. Thoracic Epidural Analgesia: Does It Enhance Recovery? Dis Colon Rectum. 2018; 61:1403-9.
18. Koning MV, Teunissen AJW, van der Harst E, Ruijgrok EJ, Stolker RJ. Intrathecal Morphine for Laparoscopic Segmental Colonic Resection as Part of an Enhanced Recovery Protocol: A Randomized Controlled Trial. Reg Anesth Pain Med. 2018; 43:166-73.
19. Kjølhede P, Bergdahl O, Borendal Wodlin N, Nilsson L. Effect of intrathecal morphine and epidural analgesia on postoperative recovery after abdominal surgery for gynecologic malignancy: an open-label randomised trial. BMJ Open. 2019;9: e024484.
20. Tang JZJ, Weinberg L. A Literature Review of Intrathecal Morphine Analgesia in Patients Undergoing Major Open Hepato-Pancreatic-Biliary (HPB) Surgery. Anesth Pain Med. 2019;9: e94441.
21. Wainwright TW, Gill M, McDonald DA, et al. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020; 91:3-19.
22. Blocks such as iPACK and adductor canal block are preferred over femoral and sciatic nerve blocks after TKA as they do not interfere with early ambulation which is desirable after TKA.
23. Kumar L, Kumar AH, Grant SA, Gadsden J. Updates in Enhanced Recovery Pathways for Total Knee Arthroplasty. Anesthesiol Clin. 2018; 36:375-86.
24. Oseka L, Pecka S. Anesthetic Management in Early Recovery After Surgery Protocols for Total Knee and Total Hip Arthroplasty. AANA J. 2018; 86:32-9.
25. Edwards MD, Bethea JP, Hunnicutt JL, Slone HS, Woolf SK. Effect of Adductor Canal Block Versus Femoral Nerve Block on Quadriceps Strength, Function, and Postoperative Pain After Anterior Cruciate Ligament Reconstruction: A Systematic Review of Level 1 Studies. Am J Sports Med. 2020; 48:2305-13.
26. Hewson DW, Oldman M, Bedforth NM. Regional anaesthesia for shoulder surgery. BJA Educ. 2019; 19:98-104.
27. Diwan S, Nair A. Erector Spinae Plane Block for Proximal Shoulder Surgery: A Phrenic Nerve Sparing Block!. Turk J Anaesthesiol Reanim. 2020; 48:331-3.
28. Kim AJ, Yong RJ, Urman RD. The Role of Transversus Abdominis Plane Blocks in Enhanced Recovery After Surgery Pathways for Open and Laparoscopic Colorectal Surgery. J Laparoendosc Adv Surg Tech A. 2017; 27:909-14.
29. Akerman M, Pejčić N, Veličković I. A Review of the Quadratus Lumborum Block and ERAS. Front Med (Lausanne). 2018; 5:44.
30. Guffey R, Keane G, Ha AY, et al. Enhanced Recovery With Paravertebral and Transversus Abdominis Plane Blocks in Microvascular Breast Reconstruction. Breast Cancer (Auckl). 2020; 14:1178223420967365.
31. Rotstein D, Park C, Khaitov S, Dickstein E. Rectus sheath catheters-a novel approach to perioperative analgesia for colorectal surgery in an enhanced recovery after surgery (ERAS) protocol: a case series. Int J Colorectal Dis. 2019; 34:1345-8.
32. Bakshi S, Mapari A, Paliwal R. Ultrasound-guided rectus sheath catheters: A feasible and effective, opioid-sparing, post-operative pain management technique: A case series. Indian J Anaesth. 2015; 59:118-20.
33. El-Boghdadly K, Madjdpour C, Chin KJ. Thoracic paravertebral blocks in abdominal surgery – a systematic review of randomized controlled trials. Br J Anaesth. 2016; 117:297-308.
34. Niraj G, Kelkar A, Hart E, Horst C, Malik D, Yeow C, Singh B, Chaudhri S. Comparison of analgesic efficacy of four-quadrant transversus abdominis plane (TAP) block and continuous posterior TAP analgesia with epidural analgesia in patients undergoing laparoscopic colorectal surgery: an open-label, randomised, non-inferiority trial. Anaesthesia. 2014;
35. Mishriky BM, George RB, Habib AS. Transversus abdominis plane block for analgesia after Cesarean delivery: a systematic review and meta-analysis. Can J Anaesth. 2012; 59:766-78.
36. Fields AC, Weiner SG, Maldonado LJ, Cavallaro PM, Melnitchouk N, Goldberg J et al. Implementation of liposomal bupivacaine transversus abdominis plane blocks into the colorectal enhanced recovery after surgery protocol: a natural experiment. Int J Colorectal Dis. 2020; 35:133-8.
37. Marija T, Aleksandar D. Erector spinae plane block in various abdominal surgeries: A case series. Saudi J Anaesth. 2020; 14:528-30.
38. Hannig KE, Jessen C, Soni UK, Børglum J, Bendtsen TF. Erector Spinae Plane Block for Elective Laparoscopic Cholecystectomy in the Ambulatory Surgical Setting. Case Rep Anesthesiol. 2018; 2018:5492527.
39. Park S, Park J, Choi JW, et al. The efficacy of ultrasound-guided erector spinae plane block after mastectomy and immediate breast reconstruction with a tissue expander: a randomized clinical trial. Korean J Pain. 2021; 34:106-13.
40. ElHawary H, Joshi GP, Janis JE. Practical Review of Abdominal and Breast Regional Analgesia for Plastic Surgeons: Evidence and Techniques. Plast Reconstr Surg Glob Open. 2020;8: e3224.
41. Zhang Y, Liu T, Zhou Y, Yu Y, Chen G. Analgesic efficacy and safety of erector spinae plane block in breast cancer surgery: a systematic review and meta-analysis. BMC Anesthesiol. 2021; 21:59.
42. Chiu C, Aleshi P, Esserman LJ, et al. Improved analgesia and reduced post-operative nausea and vomiting after implementation of an enhanced recovery after surgery (ERAS) pathway for total mastectomy. BMC Anesthesiol. 2018; 18:41.
43. Parikh RP, Myckatyn TM. Paravertebral blocks and enhanced recovery after surgery protocols in breast reconstructive surgery: patient selection and perspectives. J Pain Res. 2018; 11:1567-81.
44. Afonso AM, Newman MI, Seeley N, et al. Multimodal Analgesia in Breast Surgical Procedures: Technical and Pharmacological Considerations for Liposomal Bupivacaine Use. Plast Reconstr Surg Glob Open. 2017;5: e1480.
45. Diwan S, Koh WU, Chin KJ, Nair A. Bilateral high thoracic continuous erector spinae plane blocks for postoperative analgesia in a posterior cervical fusion. Saudi J Anaesth. 2020; 14:535-7.
46. Qiu Y, Zhang TJ, Hua Z. Erector Spinae Plane Block for Lumbar Spinal Surgery: A Systematic Review. J Pain Res. 2020; 13:1611-9.
47. Chiu C, Aleshi P, Esserman LJ, et al. Improved analgesia and reduced post-operative nausea and vomiting after implementation of an enhanced recovery after surgery (ERAS) pathway for total mastectomy. BMC Anesthesiol. 2018; 18:41.
48. Garg R. Regional anaesthesia in breast cancer: Benefits beyond pain. Indian J Anaesth. 2017; 61:369-72.


How to Cite this Article: Nair AS, Diwan S | Regional Anaesthesia in Enhanced Recovery After Surgery Pathways – A Quintessential Component | International Journal of Regional Anaesthesia | July-December 2021; 2(2): 87-91.


(Abstract Text HTML) (Download PDF)